
ERDC MSRC/PET TR/00-07

Execution and Load-Balance Improvements
in the

CH3D Hydrodynamic Simulation Code

by

Phu Luong
Clay P. Breshears
Henry A. Gabb

2 February 2000

03h0042000



Execution and Load-Balance Improvements

in the

CH3D Hydrodynamic Simulation Code

Phu V. Luong�

Center for Subsurface Modeling

University of Texas, Austin

Clay P. Breshearsy

Center for High Performance Software Research

Rice University

Henry A. Gabb
Director of Scienti�c Computing

ERDC MSRC

February 24, 2000

�On-Site EQM Lead, ERDC MSRC
yOn-Site SPP Tools Lead, ERDC MSRC

1



February 24, 2000 Execution and Load-Balance Improvements CH3D

Abstract

CH3D is a three-dimensional numerical hydrodynamic, salinity, and

temperature model. It is widely used to investigate important physical

features of the hydrodynamic process and bathymetry in areas such as

Chesapeake Bay, Delaware Bay, and New York Bight.

Over the years, performance analysis of CH3D has been conducted. A

parallel version with 1-D domain decomposition has been used by many

environmental scientists. We describe a dual-level parallel implementa-

tion of the 1-D domain decomposition version of CH3D. MPI is used to

parallelize the domain decomposition. In order to make the parallel code

more general, a simple scheme of partitioning data to MPI processes based

solely on the overall size of the computation grid was implemented. How-

ever, this resulted in a load imbalance between MPI processes. To improve

load balance and performance, OpenMP is used to dynamically thread the

computational domains based on the amount of work. Performance results

for MPI-only and MPI/OpenMP are presented. We also focus attention

on how OpenMP improves the load balance of two speci�c loops within

the CH3D code.

2 of 10



February 24, 2000 Execution and Load-Balance Improvements CH3D

1 Introduction

CH3D (Curvilinear Hydrodynamics in Three Dimensions) is a hydraulic simulation

model that has been used for various coastal and estuarine phenomena. The basic

model was developed by Sheng [1] for the US Army Corps of Engineers in 1986.

Over the years, it has been extensively modi�ed to suit the needs of its users.

The model is now capable of handling highly irregular physical domains involving

coastal, estuarine, and riverine environments. One such physical domain is the

Chesapeake Bay, one of the largest estuaries in the world. CH3D has been used for

hydrodynamic simulation of this area for many years [2]. CH3D has also been used

for environmental quality modeling in waterways such as Delaware Bay, C and D

canal, and New York Bight.

The reduction of execution time of CH3D is critical to various hydrodynamic

simulations and DoD environmental quality modeling projects. The CH3D 1-D do-

main decomposition is described in [3] and will not be covered in detail here. In the

present study, in addition to MPI, we use the OpenMP dynamic threading capa-

bility to improve the load balance between processes. Our parallelization method

is described below along with performance results using the New York Bight as a

typical data set (Figure 1).

3 of 10



February 24, 2000 Execution and Load-Balance Improvements CH3D

Figure 1 New York Bight Curvilinear Grid

2 Method

The 1-D domain decomposition of the New York Bight grid (Figure 1) assigns blocks

of consecutive rows to each processor. The number of processors that could be used

for execution of the MPI{version of CH3D had been built into the code. These

preset restrictions were based on the New York Bight model and had most likely

been determined through a static analysis of the grid designed to best balance the

work given to each processor.

Since this static allocation does not allow changes in the model, let alone the

use of an entirely di�erent grid, static allocation was removed in favor of a dynamic

4 of 10



February 24, 2000 Execution and Load-Balance Improvements CH3D

Figure 2 Computational Grid for Five Processors

method. This new scheme sought to equitably divide the rows in the grid among

the processors without regard for the structure of the grid itself. Figure 2 shows

the distribution of the New York Bight grid to �ve processors. All timing results

reported below are for this �ve processor decomposition for ten simulated days.

Pro�ling CH3D with ssrun on the SGI Origin2000 revealed one routine, CH3DDI,

that consumed nearly all of the execution time. Using the VAMPIR (Pallas) per-

formance analysis tool we identi�ed two loops that accounted for the majority of

execution time within CH3DDI. The �rst loop (Loop-1) processes whole rows from

the grid while the second loop (Loop-2) processes columns from the grid. OpenMP

directives were used to parallelize these loops. The number of threads spawned by

5 of 10



February 24, 2000 Execution and Load-Balance Improvements CH3D

Figure 3 Loop-1 (MPI-only) Cumulative Execution Time

each MPI process was left to the operating system by enabling the dynamic mul-

tithreading capability of OpenMP; i.e., the OMP DYNAMIC environment variable

or the OMP SET DYNAMIC subroutine.

Colors in the timing charts (Figures 3-6) correspond to the domains in the com-

putational grid (Figure 2). These domains are processed in parallel using MPI. The

cumulative execution time for both computationally intensive loops in the CH3DDI

subroutine clearly indicate that a load imbalance is present. Figure 3 shows the

timing results for Loop-1 and Figure 4 shows the timing results for Loop-2 from

code without OpenMP directives (MPI only).

Synchronous communication occurs periodically between the MPI processes dur-

6 of 10



February 24, 2000 Execution and Load-Balance Improvements CH3D

Figure 4 Loop-2 (MPI-only) Cumulative Execution Time

ing the computation. Therefore, MPI processes with less work (i.e., smaller do-

mains) must wait for slower processes to complete before proceeding with the com-

putation.

In order to quantify the degree of load imbalance we de�ne idle time as the ratio

of execution time to maximum execution time expressed as a percentage:

%idle = 100%�

PN�1

i=0
ti

N � tmax
(1)

where N is the number of MPI processes, ti is execution time of process i, and tmax

is the largest time ti. Idle time for Loop-1 is 32% in the MPI-only version of CH3D.

Parallelizing Loop-1 (Figure 5) using OpenMP with dynamic multithreading en-

7 of 10



February 24, 2000 Execution and Load-Balance Improvements CH3D

Figure 5 Loop-1 (MPI/OpenMP) Cumulative Execution Time

abled (MPI/OpenMP) improves load balance (22% idle time). Maximum execution

time is also reduced from 18 minutes (MPI-only) to 8.5 minutes (MPI/OpenMP).

The second computationally intensive loop in CH3DDI also exhibits a load im-

balance for the simple data distribution used. The maximum wallclock time for

Loop-2 is 18.5 minutes (33% idle time) for the MPI-only version. As with Loop-1,

the MPI/OpenMP code yields a decreases in both wallclock time (10 minutes) and

percent idle time (22%) for Loop-2 (Figure 6).

8 of 10



February 24, 2000 Execution and Load-Balance Improvements CH3D

Figure 6 Loop-2 (MPI/OpenMP) Cumulative Execution Time

3 Conclusions

CH3D was parallelized using MPI and a simple, but poorly load balanced, 1-D

domain decomposition scheme. A 2-D domain decomposition would produce a

more balanced distribution of work but require substantial code modi�cation. This

option is undesirable.

To avoid extensive code modi�cation, we attempted to restore load balance in

the MPI version of CH3D using the dynamic multithreading capability of OpenMP.

With dynamic multithreading enabled, di�erent numbers of threads are created for

each MPI process depending on the amount of work in the computational domain.

Initial timing results show the load imbalance present in two work-intensive loops

9 of 10



February 24, 2000 Execution and Load-Balance Improvements CH3D

in the dominant subroutine of CH3D. These results reect the onerous data distri-

bution of the computational grid. Parallelizing the two loops using OpenMP with

dynamic multithreading enabled reduces both wallclock time and load imbalance.

These results indicate that dynamic multithreading is a viable strategy for load

balancing MPI applications. This is especially important when additional code

modi�cations are not possible.

References

[1] Sheng, Y. P. 1986, \A Three-dimensional Mathematical Model of Coastal, Estuarine and Lake
Currents Using Boundary Fitted Grids," Report No. 585, A. R. A. P. Group of Titan Systems,
Princeton, NJ.

[2] Johnson, B. H., Heath, R. E., Hsieh, B. B., Kim, K. W., and Butler, H. L. 1991. \User's Guide for
a Three-dimensional Numerical Hydrodynamic, Salinity, and Temperature Model of Chesapeake
Bay," Technical Report HL-91-20, US ArmyEngineer Waterways Experiment Station, Vicksburg,
MS.

[3] Zhu, J., Johnson, B., Bangalore, P., Huddleston, D., and Skjellum, A. \On the Parallelization of
CH3D," Technical Report ERDC MSRC/PET TR/98-07.

10 of 10


